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PIANE TKERMOELASTIC  DEFORMATION  OF IN'IERNALLY HEATED 

ANNULAR DISKS OR HOLLOW' CYLINDERS 

By Franklyn B . F u l l e r  
Ames Research  Center 

SUMMARY 

A plane  e las t ic   problem  of   bodies  bounded by   concent r ic   c i rc les   and   hea ted  
a t  the inner  boundary i s  so lved   i n   t he  "uncoupled, quasi-static"  approximation. 
The hea t ing   takes   p lace   by   sur face  heat t r ans fe r ,   w i th   l imi t ing   ca ses   co r re -  
sponding t o  sudden temperature change  and t o   c o n s t a n t   f l u x  of h e a t .  The stress 
boundary  condi t ions  t reated  are   those of constant   pressure a t  the inner  w a l l  
whi le   the  outer  w a l l  may b e   e i t h e r  f ree  or r i g i d l y   r e s t r a i n e d .  

The t ime-dependent   resu l t s   for   s t resses ,   d i sp lacement ,   and   tempera ture   a re  
ca l cu la t ed  and shown f o r   s e v e r a l   c a s e s  with varying  values   for   the  parameters  
specifying heat t ransfer   and  w a l l  th ickness .  The e f f e c t  of varying  Poisson 's  
r a t i o  i s  a l s o  examined.  Formulas fo r   s t eady- s t a t e   d i s t r ibu t ions  of the   quant i -  
t i e s  of i n t e r e s t  are a l so   g iven ,  as w e l l  as some approximate  resul ts  t ha t  can 
be  used  for   very small t imes.  

INTRODUCTION 

There  are many eng inee r ing   u ses   fo r   cy l ind r i ca l   ves se l s  or annular   disks ,  
and some of t hese   i nvo lve   d i f f e ren t i a l   hea t ing  of inner   and   ou ter   cy l indr ica l  
surfaces  with  consequent  thermal stresses.  Some examples are given  by Heisler 
i n   r e f e r e n c e  1. The p resen t  work w a s  begun i n   a n   e f f o r t   t o   c a l c u l a t e   t h e  
thermoelast ic   behavior  of some d i sks   u sed   i n  a c o n s t r i c t e d   a r c  wind t u n n e l ,   i n  
which  arc-heated  gas   f lows  through  the  central   hole  of t he   d i sks .  The formula- 
t i o n  of the  problem  and  the  subsequent  solutions  are,  however, c a s t   i n   g e n e r a l  
terms and t h e   r e s u l t s  may be adapted t o  a v a r i e t y  of spec i f i c   app l i ca t ions .  

The ca l cu la t ion  of t h e r m o e l a s t i c   s t r e s s e s   i n   c i r c u l a r   c y l i n d e r s   h a s  
received a good deal of a t t e n t i o n   i n   t h e   p a s t ,  as a t t e s t ed   by   t he   con ten t s  
and/or   bibl iographies  of re ferences  1-8. Most of t h e   e a r l i e r  work w a s  con- 
cerned   wi th   the   so l id   cy l inder  (or d i sk )  and the  paper  of J aege r   ( r e f .  9) i s  a 
u s e f u l   c o l l e c t i o n  of   numer ica l   and   graphica l   resu l t s   for   tha t   case .  Hollow cyl- 
i nde r s  (or annular  disks)  have  not , however, been so w e l l  covered. The e a r l y  
papers  of Dah1 ( r e f .  4) and  Kent ( r e f .  7) g i v e   a n a l y t i c a l   r e s u l t s   f o r  the pres-  
ent  problem, but i n   r e f e r e n c e  4 t h e   n u m e r i c a l   r e s u l t s   a p p l y   t o   e i t h e r   t h i n -  
wal led  cyl inders  or to   th ick-wal led   ones  wi th  spec ia l   t empera ture   d i s t r ibu t ions .  
I n   r e f e r e n c e  7, t h e r e  are some very  brief  numerical  examples  given. 

More r e c e n t l y ,   T r o s t e l   ( r e f .  10) has  given a g e n e r a l   s o l u t i o n   f o r  a hollow 
c i r c u l a r   c y l i n d e r  of f i n i t e   l eng th ,   f rom which are ex t r ac t ed  some r e s u l t s   f o r  
t he   i n f in i t e - l eng th ,  or two-dimensional,  case. A method for   approximate  solu-  
t i o n  of the  (two-dimensional)  hollow  cylinder  problem (among o the r s )  i s  set  out 
i n   r e f e r e n c e  11, and  the  case of a thin-wal led  cyl inder  w i t h  i n t e r n a l   h e a t  gen- 
e r a t i o n  i s  t r e a t e d   i n   r e f e r e n c e  12 .  This l i s t  i s  cer ta in ly   no t   exhaus t ive ,   bu t  
serves t o   i l l u s t r a t e   t h e   f a c t   t h a t   t h e r e   d o e s   n o t  seem t o   b e  any  systematic 



presen ta t ion  of thermoelas t ic   s t resses   for   the   two-dimens iona l  body  bounded  by 
concentr ic   c i rc les   and  undergoing  var ious types of heat ing.   This  i s  probably 
because, as no ted   i n   r e f e rence  1, t h e r e  i s  a new parameter t o  be considered 
ove r   t hose   fo r   t he   so l id  body,  and the   r e su l t i ng   ana ly t i ca l   exp res s ions  are 
ra ther   formidable   un less   there  i s  a n   e l e c t r o n i c  computer ava i l ab le .  

It w a s  therefore   cons idered   tha t   an   ex tens ive  set  of   ca lcu la t ions  of t h e r -  
m a l  stresses i n   t h e   t w o - d b e n s i o n a l   e l a s t i c  case (annular   disks  or long  hollow 
cyl inders )  would b e   u s e f u l   i n  several f i e l d s  of engineering.  This i s  p a r t i c u -  
l a r l y  so f o r   t h e   d i s k s   w i t h   t h i c k  walls where  approximate  results are not  so 
simply  derived as f o r   t h i n  walls. The theo ry   t o   be   u sed   i n   so lv ing   t h i s   p rob -  
lem i s  t h e  one ap t ly   ca l led   "quas i - s ta t ic ,   uncoupled"   in   re fe rence  2 .  I n  t h i s ,  
t h e  dynamic e f f ec t s   o f   hea t ing ,  and the e f f e c t  of volume change on heat ing,  are 
ignored. A s  a resul t   of   this   approxhat ion,   the   heat-conduct ion  problem  can  be 
solved f irst ,  and   the   resu l t   used   in   de te rmining  stress.  Circumstances  under 
which th i s   decoupl ing  i s  permissible  are d i scussed   i n   r e f e rence  2 .  There, 
examples i n  which more exac t   so lu t ions  are obtainable  are  analyzed,  and some 
ind ica t ions  as t o   t h e   s i z e  of t h e   e r r o r  are deduced. 

I n  a rough way, it appears   that   the   quasi-s ta t ic   uncoupled  solut ions are 
v a l i d  when the   p roduct  of the  combinations 

(Ti i s  t h e   i n i t i a l ,   s t r a i n - f r e e   t e m p e r a t u r e ,  p t he   dens i ty ,   cv   t he   spec i f i c  
beat a t  constant  volume of   the  material, 6 t h e   r a t e  of volume d i l a t a t i o n ,  and 
T t h e  rate of  change  of  temperature. The remaining symbols are d e f i n e d   i n   t h e  
appendix.) The smallness  of  the  second  ratio means t h a t  pronounced l a g  between 
temperature  and  displacement  should  not arise, nor  should  vibrations  be  induced. 
(See  ref .  2 f o r  a complete  discussion.) 

The manner  of hea t ing   t he  body i n   q u e s t i o n  i s  of some importance.   In much 
of the  thermal  stress work t h e   i n i t i a l   c o n d i t i o n  of sudden  change  of tempera- 
ture  a t  some surface i s  taken.  The overly  conservative  design  requirements 
from t h i s   c o n d i t i o n  are pointed  out  by Ngdai ( ref .  13, pp. 397-398) and  by 
Heis le r  ( re f .  1). It i s  more r e a l i s t i c   t o   c o n s i d e r   t h a t   t h e r e  i s  a sur face  
hea t - t r ans fe r   r e s i s t ance ,   and   t o  a l ter  the  boundary  conditions  accordingly.  
This  causes some increase  in   analyt ic   complexi ty   and,  as a r e s u l t ,  a new param- 
e te r   appears ,  namely t h e  Nusselt, or Biot ,  number which  involves  the  surface 
hea t - t r ans fe r   coe f f i c i en t .  

Once the   t r ans i en t   t empera tu re   d i s t r ibu t ion  i s  known, t h e  stresses may be 
determined. For t h e   c a s e   s t u d i e d ,   t h i s  amounts t o   e v a l u a t i n g   c e r t a i n   i n t e g r a l s  
of the   t empera ture   d i s t r ibu t ion  (as given, e .g., i n  re f .  14) toge ther   wi th  con- 
s t a n t s   t o  f i t  stress boundary  conditions.  These  conditions are h e r e   t a k e n   t o  
b e   t h a t   t h e r e  i s  a f ixed   p re s su re   ac t ing  on the   inner   sur face ,   whi le   the   ou ter  
surface may be   e i the r   f r ee   o r   r i g id ly   r e s t r a ined .   In t e rmed ia t e   ca ses   o f  elas- 
t ic   res t ra in t   can   be   in te rpola ted   be tween  these   ex t remes .  

Formulas w i l l  be  given  from  which  temperature,  displacement,and stresses 
can  be  calculated  for   arbi t rary  posi t ion  and  t ime.   Numerical   resul ts   which 
sample t h e   f u l l   r a n g e  of the   parameters   a f fec t ing   the   charac te r  of t h e   s o l u t i o n  
w i l l  be  presented  and  discussed. These  should  be  suff ic ient   for  a d e s i g n e r   t o  
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ob ta in   e s t ima tes   fo r  stresses i n   c a s e s   o t h e r   t h a n   t h o s e   d i r e c t l y  shown. Steady- 
state  results are quite  simple  and are eas i ly   ca l cu la t ed   fo r   any   ca se  of interest. 

A t  the   opposi te   extreme  f rom  the  s teady-state   dis t r ibut ions are t h e   i n i -  
t i a l  ones ,   tha t  i s ,  the  temperature  and stress d i s t r i b u t i o n s  which  occur 
s h o r t l y  af ter  the   onse t  of  heating (or cool ing) .  The s t a r t i n g   d i s t r i b u t i o n s  
are of   considerable   interest   because  the  gradients  of temperature and  hence  of 
stress are most severe  then (when the re  i s  a su r face   hea t - t r ans fe r   r e s i s t ance ) .  
They are d i f f i c u l t   t o   c a l c u l a t e   b y   u s e  of the   genera l  results,  owing t o  slow 
convergence of series expansions. However , operat ional   techniques (see 
Goldstein,  re f .  15) lend  themselves   to   approximate  calculat ion  of   these  short-  
t ime   r e su l t s ,  and a number of  such  formulas are given. 

ANALYSIS 

A s  s ta ted   in   the   In t roduct ion ,   the   quas i - s ta t ic ,   uncoupled   approximat ion  
i n   t h e r m o e l a s t i c i t y  w i l l  be employed. I n   t h i s ,  the  tempera ture   d i s t r ibu t ion  i s  
f i r s t  determined as a so lu t ion   to   the   l inear   hea t -conduct ion   equat ion ,  and then  
the  temperature   funct ion  is   used  to   determine  displacement  and s t r e s s e s .  

Temperature  Distributions 

F i r s t ,   t h e   t e q e r a t u r e   d i s t r i b u t i o n   f o r  a region bounded  by concentr ic  
c i r cu la r   cy l ind r i ca l   su r f aces   w i thou t   va r i a t ion   a long  the ax ia l   d i r ec t ion   can  
be   wr i t ten   ou t .  The problem i s  a l so   spec ia l i zed   t o   a l l ow  on ly   r ad ia l   va r i a t ion  
of a l l  q u a n t i t i e s .  There i s   t o  be a choice of three  boundary  conditions on t h e  
temperature or i t s   g r a d i e n t   ( f l u x )  a t  the   inner   cy l indr ica l   sur face .  The equa- 
t i o n  of heat  conduction i s ,  in   the  absence of extraneous  heat   sources ,  

where the symbols are de f ined   i n  the appendix. The the rma l   d i f fus iv i ty  IC i s  
t aken   t o   be   cons t an t .  It w i l l  be  convenient to   in t roduce   the   d imens ionless  
va r i ab le s  (see sketch)  

p = a  r ,  po = a-lb , 7 = Ka-2t 
-1 

where a i s  the outer   rad ius   o f   the  
disk  and b the   i nne r .  The equat ion 
of conduction becomes 

A s  i n i t i a l   cond i t ion ,   a lways  

T(p,O) = T1 

3 



where T, i s  a temperature a t  which  the material i s  s t r a i n  f ree .  A boundary 
condi t ion a t  the   ou te r   su r f ace  r = a, hence a t  p = 1, i s  always t o   b e  

The boundary  condition a t  t h e  inner sur face ,  r = b ,  or p = Po, w i l l  be one 
of   three:  

Case B 

where Fo i s  t he   hea t  flux, 

\ 

Case C 

o r  (kc)  

where h i s  the   su r f ace   hea t - t r ans fe r   coe f f i c i en t  and m (= hb/k) i s  the Biot  
number. The boundary  conditions  are  here  taken  to  be  independent of t ime ,   fo r  
t > 0. More compl ica ted   t ime  var ia t ions   can   be   t rea ted   by   use   o f  Duhamel's 
theorem ( re f .  16)  o r  by d i r ec t   u se  of t he   convo lu t ion   p rocess   fo r   kp lace   t r ans -  
forms .   In   the  las t  boundary  condition, C ,  l e t  m + 00 - Then t h e   f l u x  may be 
loosely  considered as becoming i n f i n i t e   s u c h   t h a t   t h e   t e m p e r a t u r e   a t  p = po 
jmps suddenly t o  To a t  t = 0, and thereaf ter   remains a t  To. Thus, t h i s   l i m i t  
corresponds t o   c a s e  A .  On the  other  hand, i f  the  boundary  conductance h -+ 0 
while   the  reservoir   temperature  To becomes very  large,  it can  be  thought, 
a g a i n   r a t h e r   l o o s e l y ,   t h a t   t h i s   c o r r e s p o n d s   t o   c a s e  B,  wi th   cons tan t   f lux .  
Thus, when a s o l u t i o n   f o r   c a s e  C has  been  obtained,  the two l imi t ing   ca ses  
m = a, 0 s h o u l d   l e a d   t o   s o l u t i o n s   f o r   c a s e s  A and B, respect ively.   This   can,  
of  course,   be  checked  by  actual  calculation. 

The problem  posed i n   e q u a t i o n s  (1) t o  (4)  can  be  solved  by  standard  tech- 
niques; i n   f a c t ,  a s o l u t i o n   f o r  a more general  problem,  from  which  the  present 
one can  be  derived, i s  g i v e n   i n   r e f e r e n c e  16. However, i n  view of t h e  need 
which w i l l  a r i s e  la ter  for   the   Laplace   t ransform of t he   so lu t ion ,  it i s  conve- 
n i e n t   t o  go  very  br ief ly   through  the  process .  The Laplace  transform of a func- 
t i o n  i s  here  denoted  by a bar ,   thus  " 
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I n  terms of t hese  new va r i ab le s  T and p ,  it i s  now necessary   to   so lve   the  
- 

d i f f e r e n t i a l   e q u a t i o n  

where 

q2 = P 

and t o  make the   so lu t ion  conform t o  the appropriate  boundary  conditions a t  
p = po,l. The l a s t  equat ion i s  recognized as Bessel 's for   modif ied  funct ions 
of order   zero.  The complete  solution i s  then  

where Io, KO denote the modif ied  Bessel   funct ions of f i r s t  and  second  kind as 
defined  by Watson ( r e f .  17). The determination of the cons tan ts  A, B i s  made 
by means of  boundary  conditions;  only  condition C ( eq .   (kc ) )  w i l l  be  consid- 
e r e d   f o r  t h i s  purpose.  The r e s u l t  i s  the t ransform 

TC - T 
1 = - "  m ~. Io(qP)xo(q) - Ko(qdIo (q )  

To - T, 
. ~~ 

P r 
Io (q )  iPoq%' ( 9 P O )  - mK,(qPo) -1 - lio(q) j PoqIo' ( 9 P O )  - mIo(qp,)]  

- 
(5) 

Inversion of t,his t ransform  requi res  knowledge of the  zeros  of the denom- 
i n a t o r   i n   t h e  complex p p lane .  'fie pole  a t  p = 0 w i l l  cont r ibu te  the 
s t eady- s t a t e   r e su l t   fo r   t he   p re sen t   p rob lem,  which i s  seen t o   b e  nonzero  by 
physical   reasoning.  It i s  

The remaining  zeros  of  the  denominator i n   e q u a t i o n  (5) are real  and simple. 
If they  are denoted 
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and t h e  complex inversion  formula 

i s  used,. t h e n   a f t e r  some a lgebra ,   and   use   o f   re la t ions  for the   Besse l   func t ions  
from  reference 17,. it i s  found  tha t  

From t h e   r e s u l t   f o r   t h e  mixed  boundary  conditions,  case C ,  g i v e n   i n  equa- 
t i o n  (6) ,. t h e   r e s u l t s  for cases  A and B ( see   eqs .  ( h a )  and (4b))   can now be  
o b t a i n e d .   F i r s t ,   t o   o b t a i n   c a s e  A, m i s  allowed t o  become very   l a rge ,   g iv ing ,  
i n   t h e  limit 

and a, i s  w r i t t e n   f o r   t h e   t y p i c a l   e i g e n v a l u e   i n   t h i s   c a s e   t o   d i s t i n g u i s k  it 
from t h a t   f o r   c a s e  C .  

To determine  the  solut ion  for   case B, wr i t e  m = h(b/k)  and  allow  the 
product  h(To - T1i4;)j(To - Tl) / (b /k)   to   approach   un i ty   (cor responding   to  
(aFo) = 1 i n  eq. while h + 0. Then, 
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where 

Determination  of  Displacement  and  Stresses 

When  the  temperature  distribution  in  the  material  is  known,  it  is  possible 
to calculate  the  displacement u and  the  stresses Or, " 8 .  Because  of  the 
radial  symmetry,  the  shearing  stress -rr8 vanishes  everywhere.  On  this 
account,  the  maximum  shear  stress  at  any  point is simply (1, 2 )  1 zr - 06 I . 

Plane  stress .- If a  body  is  thin,  as  a  plate,  in  one  dimension  (say z), 
and all the  forces  and  stresses  lie  in  the  plane  of  the  body,  a  two-dimensional 
problem  results,  in  that a l l  stresses oz, ayz,  oxz  vanish  and  the  remainder 
are  free of z'. (See  ref. 1-.) The  formulas for displacement  and  stresses  are 
then (ref. 1 : L )  

r 
CL(T - T,)x dx + E 

r2 1 - v2 
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Now wr i t e  

where 

The above  boundary  conditions  give 

Dl = (1 

PO* = 
Po 

a(T0 - ‘l’=)E 
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Next, the  boundary  conditions  of  r igid  restraint  of the  outer   surface  and 
pressure  po on the   inner   sur face   g ive  

Denote now the   quan t i t i e s  on the l e f t   i n   e q u a t i o n s  (10) by u ' ,  or I, o u r .  
Y'l le n 
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po2po - 2 ( 1  + v) 
(1 - v) + (1 + v ) p o 2  

-x 

It i s  i n t e r e s t i n g   t o   n o t e  t h a t  when the  outer  boundary i s  f r e e ,   t h e  
stresses or*, oe* do not  depend upon the P o i s s o n ' s   r a t i o  V .  'l'hls i s  not 
t r u e  for or'  and o e ' ,  t h a t  i s ,  when the  outer  boundary i s  r i g i d l y   r e s t r a i n e d .  
I n  e i the r   ca se ,  however, the  radial   displacement  does depend  upon the   Po i s son ' s  
r a t i o .  

P lane   s t ra in . -  Here t h e   i d e a l i z a t i o n  i s  t h a t  of a long body i n  whicll a l l  
quant i t ies   are   independent  of ax ia l   d i s t ance .  In t h i s   s i t u a t i o n , ,   t h e r e  are 
a x i a l   s t r e s s e s  oz ac t ing  a t  the  ends  of  the cy l inder  of magnitude 

These  can  be removed by a uni form  ax ia l   s t ress   appl ied  so t h a t   t h e   r e s u l t a n t  
force  on the  ends i s  zero.  By Saint  Venant' s p r i n c i p l e , ,   t h i s  se l f -  
equi l ibrat ing  system  act ing on the  ends w i l l  a f f e c t   o n l y   l o c a l l y   t h e   s t r e s s e s  
i n   t h e   c y l i n d e r   ( s e e   r e f .  1;~) . 

In   o rder   to   ob ta in   formulas   for   p lane   s t ra in   p roblems  f rom  the  above 
r e s u l t s  for plane stress,  it i s  only   necessary   to   subs t i tu te  E/(1 - v * ) ,  
v/(i - v ) ,  (1 + v ) a  f o r  E, V ,  a ,  r e spec t ive ly .  'l'hus, f o r  example,  equa- 
t i o n   ( l l b )  becomes, f o r   p l a n e   s t r a i n ,  

a(T0 - 'lIl)E 

' Ike  Steady-State  Distributions 

I n  a l l  cases ,   the   s teady-s ta te   t empera ture   d i s t r ibu t ions  are represented 
by  the  formula 

10 



For the   th ree   hea t ing  modes the  constants   take  the  fol lowing  values:  

Case C 

These  temperatures  therefore  decrease  monotonically  between p = po and P = 1. 
The s t resses ,   as   g iven   in   equa t ions  (lo), depend  upon t h e   i n t e g r a l  

(14) 
It i s  interest ing  to   determine  whether   the  s teady-state   s t resses   have  an  extre-  
mum i n   t h e   i n t e r v a l  

- 

Consider f i r s t  
boundary  conditions 

An extremum of or 

Po < P < 1. 

t h e   s t r e s s e s  as given in   equa t ions  (10) before   any   s t ress  
a r e  imposed.  Then, 

occu r s   a t  P = per where 

When the  value of D2 found  above f o r  a s t ress-free  boundary i s  used, 

11 



It i s  i n t e r e s t i n g   t o   n o t e   t h a t  when t h e   i n t e r n a l   p r e s s u r e  i s  neglected,   the  
c r i t i c a l   p o i n t   f o r  or in   the  f ree   outer   boundary  problem i s  completely  inde- 
pendent  of a l l  e l a s t i c  and  thermal  parameters,  depending  only  on  the  geometri- 
c a l   q u a n t i t y  po, t h e   r a t i o  of  inner t o   o u t e r   r a d i i  of  the  body. Also, since 
both po* and N are p o s i t i v e   q u a n t i t i e s  (when Tref > O ) ,  it i s  seen  from 
equation (l'ja) t h a t  a suff ic ient ly   high  internal   pressure  po  can  cause  the 
p o s i t i o n  of t h e  extremum, p = per.' t o  move beyond p = 1. 

Exminat ion  of t he   de r iva t ive  of c i r cumfe ren t i a l   s t r e s s   i nd ica t e s   t ha t  no 
p i n  po < p < 1 gives  an extremum.  Hence, t h e   ( a l g e b r a i c a l l y )   l a r g e s t  and 
smallest   values  of c i rcumferent ia l  stress must occur a t  the  boundaries,  a t  
l e a s t   i n   t h e   s t e a d y   s t a t e .  

In   the  event   that   the   outer   boundary i s  r ig id ly   r e s t r a ined ,   equa t ion  (15) 
gives  for t h e   c r i t i c a l   r a d i u s  

1 + (1 - v) log (&) + 2 ( 1  - VIPO* 
'2 N Per = 2p02 

(1 - v) + (1 + V)P02 
(16) 

Figure 1.- Locations of extreme va lues  of 
r a d i a l  stress i n   t h e   s t e a d y   s t a t e  
(eqs. (15) and (16)). 

Again the   c i rcwnferent ia l   s teady-s ta te  
s t r e s s  i s  monotonic i n  po < p < 1. 
With the   r ig id i ty   condi t ion ,   the   va lue  
of Per, t h e   p o s i t i o n  of a n   i n t e r i o r  
extremum of r a d i a l   s t r e s s ,  does  depend 
upon Po i s son ' s   r a t io  V ,  even when t h e  
in te rna l   p ressure   po  i s  ignored. 

I n   f i g u r e  1 per i s  p l o t t e d   f o r  
f r e e  and for   r ig id   ou ter   boundar ies .  
The l a t t e r   a r e  drawn for   th ree   va lues  
of t he   Po i s son   r a t io  v, and po  i s  
always  taken t o  be  zero. It i s  seen 
t h a t   t h e   e f f e c t  of  change  of  Poisson 
r a t i o  i s  not  great,   even  over  the 
extreme  range 0 < v < 0.5. 

I n i t i a l  Behavior of Solutions 

The ser ies   der ived  above as solut ions  for   the  temperatures  and t h e i r   i n t e -  
g r a l s  which are   used t o  determine  stresses  are  not  well   adapted  for  use  with 
small values of the  "time" T, say f o r  T < The damping ef fec t   o f   the  
exponential   terms i s  then  delayed,  and many terms of t h e   s e r i e s  must be  evalua- 
ted .   Al though  th i s  i s  not a serious  disadvantage when t h e   s m a t i o n s   a r e   c a l -  
culated  by  an  electronic  computer,  it i s  o f t e n   u s e f u l   t o  have  a  sirnple 
e x p r e s s i o n   f o r   t h e   i n i t i a l   b e h a v i o r  of a so lu t ion .  The a p p l i c a b i l i t y  of t he  
p r e s e n t   r e s u l t s  i s  thereby  enhanced  since  cases  not  covered  by  the  specific 
ca l cu la t ions   g iven   l a t e r  may be  t reated.  The even tua l   d i s t r ibu t ions   i n   t he  
steady state a r e  known from the  previous  sect ion.  

12 



A par t icular ly   advantageous way of ob ta in ing   the  small r r e s u l t s  w a s  
popularized  by  Goldstein (ref. 15). This  involves  the  use  of  asymptotic  expan- 
s ions  of the  Laplace  t ransforms  (Goldstein  used  operat ional   concepts)   of   the  
var ious  funct ions  of   interest ,   fol lowed  by  term-by-term  inversion of t h e  
r e s u l t s .  A discussion  of   the  process ,  w i t h  j u s t i f i ca t ion ,   can   be  found i n  ref-  
erence 18. 

Approximations f o r  the temperature.- TO start ,  consider the r e s u l t   g i v e n  
in   equa t ion  ( 3 )  for the  Laplace  transform of temperature : 

where 
. 

= Bo'(z)  J 
The asymptotic  formulae  for  the  modified Bessel func t ions  w i l l  be  needed;  from 
reference  17, 

K,(w) .., 'IC - e-w (1 + &) 
& 



The las t  r e su l t s   can  now be   subs t i tu ted   in   the   t ransform  equat ion  (l7), 
and the  following  approximate  (p + 00) formula i s  found : 

where 

I n   t h i s  approximation,  terms i n  e-2q(1-po) , e t c  ., have  been  dropped, on t h e  
supposit ions that for the   present   problem  there  w i l l  be most i n t e r e s t   i n   t h e  
region where p - po i s  small and that 1 - po i s  not small. If t h e   l a t t e r  
condition i s  v io la ted ,  so that the  wall i s  qu i t e   t h in ,  some of the  terms 
neglected  here  could  easily  be  included. These terms  represent   the  inf luence 
of the   ou ter  wall. It i s  an  advantage of t h i s  expansion method t h a t  such 
influences  can  be  identified  and  the  ones of i n t e r e s t   i n   p a r t i c u l a r   c a s e s  exam- 
ined  separately.  

The t ransform  in   equat ion  (19) can now be   inver ted ;   the   resu l t  i s ,  f o r  
small values of T, 



It w i l l  be   noted  that   equat ion (19) i s  n o t   f u l l y  expanded i n  powers  of 
q-' but,   rather,   the  denominator (q + y )  i s  kep t   i n t ac t .  I n  t h e  limit 
t "+ 0, r e s u l t s  of t h e  two processes  must, of course,   coincide,   but  there i s  a 
physical   reason for us ing   the   expans ion   as   in   equa t ion  (19) ra ther   than  a com- 
plete  expansion  in  powers of 9-1. I n  the  approximations used above,  where the  
e f f e c t  of the   ou ter  w a l l  i s  neglected,  and i f  curvature i s  a l so   neglec ted ,   the  
problem for the  hollow  cylinder i s  l i k e   t h e  same problem for a semi- inf in i te  
s l ab .  The one-dimensional  slab  problem i s  expressed  by  the  equations 

- ZI =m[To - T(O,T)] ax 
x-0 

The so lu t ion  f o r  t h i s  problem, in   t ransform  notat ion,  i s  

= m s x ( l - t + t ? r -  . . .) 
Pq  q2 

The p a r t i a l  sums of t h e  las t  ser ies   can  be  interpreted as successive  approxima- 
t i o n s  t o  t he   so lu t ion  of the  problem  in   quest ion.  For, i f  



t hen   t he   hp lace   t r ans fo rm  o f   t he   quan t i ty  ( T  (x,~) - T,)/(To - T,) coin- 
c i d e s   w i t h   t h e   n t h   p a r t i a l  sum of the  series expansion  above.  Thus,  there i s  
introduced  by  the  expansion  in  powers  of q - l  an   addi t iona l   approximat ion   in  
which the  boundary  condition i s  never   exac t ly   sa t i s f ied .   This  would seem t o  
expla in  why t h e  resul ts  obtained  in   the  or iginal   problem  by  keeping  the term 
( q  + y)-' are somewhat be t te r   than   those   found  by   s t ra ight forward   expans ion   in  
powers  of q-l ,  as w i l l  appear  below when comparison  with  machine-computed 
r e s u l t s  i s  made. For   reference  purposes ,   the   expansion  in   terms of 9-l  i s  

(n)  

The func t ions   i ne r f c  x are defined as 

0 2 L  e - 6 2  i e r f c  x = e r f c  x = - 
f i  

Tabulations of t h i s   i n t eg ra t ed   e r ro r   func t ion   can   be   found   i n   r e f e rences  16 and 
19 

It i s  found t h a t   t h e   r e s u l t s   g i v e n  by the  approximate  formula (20) a r e  
adequate   for   the  smaller   values  of Biot number m, bu t  when m > 1, accuracy 
f a l l s  off.   This  si tuation  can  be  remedied  by  writ ing 

TC - T TA - TC - TA 

To - T, To - T, To - T1 -1 = T1 + 

and  expanding  the two terms on t h e   r i g h t   s i d e   s e p a r a t e l y .  The expansion  for  
TA w i l l  be   given  short ly ,   and  the  difference  term i s  approximated  by the f o l -  
lowing  expression: 
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The small T r e s u l t s   f o r   c a s e s  A and B of hea t   input  are 

where 

where 

Comparisons of t h e  above  approximate r e s u l t s   w i t h  some machine-calculated 
ones  appear i n  f i g u r e  2 .  The la t ter  are   based on t h e   s e r i e s   g i v e n   i n  equa- 
t i o n s  (6), (7), and (8) .  The cases  m = 0, 0.1, 1.0, 10.0, 00 a r e  shown with 
po = 0.15. 

vc = TC - Tl 
To - Tl 

lim vc = v* 
m- 

which  can  be  verified by comparison of equat ions (6) and (7) . On the   o ther  
hand, for small m, 

17 
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Figure 2.- Comparison of exact and  approximate  (small T)  r e s u l t s  for  temperature. 



as discussed a t  equation (8) .  The quant i ty  Vc i s  thus  def ined as 

vc = - 1 TC - T, 
To - T, 

when m < 1, so t h a t   t h e r e  i s  a smooth approach t o   t h e  l i m i t  as m 3 0. Note 
t h a t   t h e   t e m p e r a t u r e   r a t i o  (TC - T1)/(To - T1) f o r  m < 1 i s  obtained  by 
mul t ip ly ing   the  shown quant i ty  Vc by m.  This  does  not hold i n   t h e  limit 
m = 0, where the  quantity  graphed i s  

since  the  temperature  analogous  to  the  ambient To i s  then  undefined.  Curves 
a r e  drawn fo r   va lues  of p generally  near  the  inner  boundary, which i s  t h e  
r eg ion   o f   g rea t e s t   i n t e re s t  a t  small t imes .  The agreement  between t h e  approx- 
imate  and  exact  results i s  seen t o   b e   q u i t e  good up t o  about T = 0.01, b u t   t h e  
approximate r e s u l t s  become more and more i n   e r r o r   t h e r e a f t e r .  

Also shown, on the   po r t ion  of f i g u r e  2 corresponding t o  m = 1.0,  a r e  the 
asymptotic  results  from  an  expansion  in  powers of 9-l  (eq.  (20a)). These are 
seen t o   b e  much worse than  the  ones  actual ly   used,  which  prompted the  remarks 
above  on  choice  of  expansion  for  the  temperature. 

Although  not shown, a f e w  c a l c u l a t i o n s   f o r  a d isk   wi th  a th inner  w a l l  
( po = 0.5) ind ica t e  tha t  agreement  between  exact  and  approximate r e s u l t s   f o r  
small T i s  even b e t t e r   t h a n   f o r  po = 0.15. A concomitant  which must be 
accepted i s  tha t  t h e s e   r e s u l t s  w i l l  become l e s s   adequa te   fo r   t h i cke r  walls, 
t h a t  i s ,  f o r  po < 0.15 say. If t h e   e r r o r  becomes unacceptable for such small 
p,, it may prove   prof i tab le   to   use   Golds te in‘s   device  ( r e f .  15) i n  which  func- 
t l o n s  of (qPo) are expanded f o r  small ra ther   than   for   l a rge   a rgument .  

Approximation f o r   t h e   i n t e g r a l  I( p,  po; T) .- The i n t e g r a l   d e f i n e d   i n  equa- 
~~ ~~ 

~~ 

t i o n  (10d) must be  calculated  before  the  displacement and s t resses   can   be  
found.  Using  the  form (17) for   the   t empera ture  , it i s  found t h a t  



Straightforward  expansion  using  the  asymptot ic   formulae (18a) g ives  

where aga in  

y = 1 ( 3  + po + 8 m )  
BPO 

T h i s   r e s u l t   c a n   b e   i n v e r t e d   t o   y i e l d  

The r e s u l t   i n   e q u a t i o n  ('24b) i s  adequate   for   the  smaller values  of t he  
parameter m shown i n   f i g u r e  3, but   the   accuracy i s  f a l l i n g   o f f   a s  m 
increases .  It i s  p o s s i b l e   t o  improve the  approximation somewhat for l a r g e r  
values  of m by   the  same device   tha t  was used  above for   the   t empera ture :  

and  expanding  the  difference  expression  separately.  The expansion of IA f o r  
small 7 w i l l  b e   g i v e n   l a t e r .  The d i f fe rence   express ion  i s ,  f o r   l a r g e   q ,  

20 



oec 

.Olt 

OIC 

IdP.PFJ 

00: 

015 .o I '2C 
,025 ' 0  .O IO 

/ 
/ 
L__ 

T 
C 
i )i5 

6 p.1.0 

,020 ,025 

015- 0: 
1" 1 ,025 
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21 



The last  expression  can  be  inverted  to   give,  for small T: 

In   order  t o  u se   t h i s   exp res s ion   i n   t he   ca l cu la t ion  of IC, it i s  necessary 
t o  have t h e  small T expansion for I*. This i s  given  below,  together  with 
t h a t   f o r  IB . 

Fina l ly ,  it i s  necessary t o  know the  values   taken  by  the  integral  
I ( p ,po ;~ )  when p = 1. That it i s  n o t   s t r i c t l y   c o r r e c t  simply t o   p u t  p = 1 
in  the  foregoing  approximate  expressions i s  obvious  because  the  terms i n  

e -q(l-P) were eliminated on t h e   b a s i s   t h a t  p i s  n o t   c l o s e   t o   u n i t y .   n u s  ,, 
by  the Wronskian  of Io( z) , KO( Z )  

B1(q) = 9-1 

while  the  approximation (18a) gives ,  when the  negative  exponential  i s  
neglected,  

22 



Figure 3 shows comparison of exact and  approximate r e s u l t s  f o r  t h e   i n t e -  
g r a l  I( p,p0;7). They appear t o  be  of b e t t e r   r e l i a b i l i t y   t h a n   t h o s e  shown 
e a r l i e r  f o r  the  temperature,   probably  because  they  represent  integrated quan- 
t i t i e s .  The  same convention on mul t ip l i ca t ion  by  Biot number m appl ies   here  
as f o r  the   t empera tures   in   f igure  2. 

CALCULATION OF TEMPERATURE AND STRESSES 

The ca lcu la t ions  amount e s s e n t i a l l y   t o  summing the   s e r i e s   de r ived   i n   p re -  
vious  sect ions,   such  as   equat ion ( 6 ) ,  and  determining  the  integral  I( p, po; T )  



(see  eq.  (10d) ) . A series expansion  of t h i s   i n t e g r a l  w i l l  be  given  below. 
Although t h e   s e r i e s  are convergent,   the  favorable damping  due t o   t h e   f a c t o r  

e i n  each  term i s  somewhat delayed when 7 i s  small, say 7 < I n  
t h i s   e v e n t  it i s  sometimes necessary   to   cons ider  upwards of 30 terms of t h e  
se r i e s   i n   o rde r   t o   ach ieve   fou r   s ign i f i can t   f i gu res .   Fo r tuna te ly ,   t he  terms 
a l t e r n a t e  i n  s ign  so t h e  maximum er ror   (and  i t s  sign)  caused  by  stopping a t  a 
given term i s  known. 

Calculat ion of  Eigenvalues 

Determination of t h e  sums ind ica t ed   i n   equa t ions  (6)  , (7), (8) and  of t h e  
i n t e g r a l   i n  ( loa)  requi res   tha t   the   e igenvalues  IJ.n(CLny Pn)  be  found.  These 
are   def ined  by  equat ion  (6a)  ( (7a ) ,  (8a)). It i s  poss ib le   to   der ive   approxi -  
mate expressions  for   the  e igenvalues  when  n i s  la rge   by  making use  of  the 
asymptot ic   expressions  for   the  Bessel   funct ions  (see r e f .  17). Denote,  for 
large  values  of the  argument, 

whe re 

/ \1/2 

Yo(x) .., (j- [Po(x)s in  x1 + Q ~ ( X ) C O S  x 1 ] 

11 2 
[-P (x)cos x + Ql(x)sin  xl]  

1 1 J 

M 

( j , k )  - 1 ((4j2 - l2)(4j2 - 32) . . . [4j2 - (2k - 1)'] } 
22kk ! 

and 
X 1 - X - -  - 

4 
J l  



These  expressions are now t o   b e   i n s e r t e d   i n   e q u a t i o n  (6a) .  The r e s u l t  i s  

This  r e l a t i o n  shows the   cha rac t e r i s t i c   behav io r  of the well-known transcenden- 
t a l  equat ion 

t a n  x = -x 

That i s ,  the   n th   roo t   approaches   [n  - (1/2)]7t as n inc reases .   In  the 
present   case ,   the  f i r s t  approximation t o  the  e igenvalue pn fo r   l a rge  n is 

m= 
0 

I 
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Figure 4.- Varia t ion  of the   e igenvalues  
with n, and  with  Biot number m 
(eq.   (6a) ,  p0 = 0.15). 

Further  approximations  can  be  obtained 
i f  des i red ,  i f  t h e   r e s u l t  (31) i s  sub- 
s t i t u t e d   i n t o   e q u a t i o n  ( 3 0 )  and  terms 
involving  higher powers  of 

{ [ n - (1/2) ] fi 1 -’ are determined. 

Such approximations  were  not  used 
(except   for   checking   purposes)   in   the  
p re sen t   ca l cu la t ions .  It was found as 
e a s y   t o   u s e  the complete  frequency 
equation  (6a)  and  determine  the  roots 
by means of a s imple  interpolatory  pro-  
cedure. A standard  program for Bessel 
func t ions  was used when the  argument 
x _< 20, and  extensions made by  use  of 
the asymptotic  formulae (‘29).  Figure 4 
shows t h e   v a r i a t i o n  of the  e igenvalues  
(actual ly   pn/[n - (1/2)fi])  w i t h  n, 



Summation of Ser ies   Expressions 

Once the   e igenvalues   a re  known, one can  cont inue  with  the summation pro-  
c e s s .   I n   t h i s ,  it was found  adequate, for T > 5X10-4, t o   p r o v i d e  for using,  
a t  most, 50 terms of t h e  series.  The computation  halted  automatically a t  a 
value  of n such   tha t   the   cor responding  term was less  in   absolute   magni tude 
than  ~ 0 ' ~  

The i n t e g r a l  I ( p , p o ; ~ )  def ined   in   equa t ion  ( loa)  can  also  be  expressed 
a s   a n   i n f i n i t e   s e r i e s .  Using equat ion (6) for   temperature ,  it i s  found t h a t  

(32) 
The r e s u l t s   f o r   c a s e s  A and B can  be  obtained  from  equation (32) by   su i t ab le  
l imiting  processes  performed on m. Results of t he   ca l cu la t ions   ou t l i ned  above 
w i l l  be   presented  in   the  next   sect ion.  

RESULTS OF COMPUTATIONS 

There are an enormous number of p o s s i b i l i t i e s  for ca lcu la t ing   t he  
stresses, even  though  the  parameters E, u(AT), a, k appear i n  dimensionless 
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r a t i o s .  A s e l e c t i o n  from the remaining  ones, m, V ,  po, w a s  made which w a s  
t h o u g h t   t o   g i v e  a r ep resen ta t ive   s e l ec t ion  of cases   for   d i f fe ren t   reg imes .  It 
i s  hoped t h a t   t h e   c a s e s   d e t a i l e d   h e r e  w i l l  enable one t o   o b t a i n  a t  least a 
q u a l i t a t i v e   n o t i o n  of the  magnitudes  and  distributions of temperatures, 
stresses, or disp lacements   in  a wide v a r i e t y  of s i t u a t i o n s .  There are ava i l ab le  
a l s o  the f a i r l y  simple re su l t s   fo r   t he   s t eady- s t a t e   va lues  and f o r   t h e   i n i t i a l  
va r i a t ions   de r ived  above.  These  formulae are of   course  qui te   general   insofar  
as ass igning   the   parameters  m, v, po i s  concerned. 

Effect  of  Variation  of  Biot Number m 

Free  outer  boundary.- The f irst  case  examined i s  f o r  a f ixed  geometry 
(po = 0.15) and  Poisson ' s   ra t io  (v = 0.25), with   the   Bio t  number m allowed 
t o   v a r y  between i t s  extremes of 0 and CO. A l l  q u a n t i t i e s  of i n t e r e s t  are shown 
i n   f i g u r e s  5 through 9, including  curves of t h e   i n t e g r a l  I( p,  po; T) ( see 
eqs.  (10d) and ( 3 2 )  ) . The curves are drawn so tha t  t h e   v a r i a t i o n  of each quan- 
t i t y   w i t h  p i s  shown fo r   va lues  of T covering the range O.OOO5 5 T 5 2. 
The l a t t e r   v a l u e  of 7 i s  one f o r  which the  system  has   essent ia l ly   reached i t s  
s teady s ta te ,  as ind ica ted   by   the   near   ident i ty  of t h e   c a l c u l a t i o n s   f o r  T = 1 
and = 2. The i n t e g r a l  I( p,p0;7) i s  shown so that the   p re sen t   ca l cu la t ions  
can eas i ly   be   ex tended   t o  stress boundary  conditions  other  than  the  vanishing 
of radial stress a t  p = po and p = 1. (Some r e s u l t s  for the  boundary  condi- 
t i o n  of a r i g i d   o u t e r  w a l l  w i l l  be  shown l a t e r . )  Also,  the  i n t e r n a l   p r e s s u r e  
po  i s  z e r o   i n  the c a l c u l a t i o n s   f o r   t h e   s t r e s s e s  and  displacement; i t s  e f f e c t  
may be  included  by  use of equat ions (11) or (12) . 

The values  of m f o r  which r e s u l t s  are shown are m = 0(.01), 0.1, 1, 10, 
~(100). The numbers i n   p a r e n t h e s e s   i n d i c a t e  tha t  the cor responding   resu l t s  
d i f fe r  so l i t t l e  f rom  the   r e su l t s   fo r  m = 0 and m +. 00 t h a t   t h e y  are p l o t t e d  
on the same graph,   insofar  as they   a re   d i s t inguishable .  A s  discussed  above, a 
d i f fe rence   ex is t s   in   the   d imens ionless   g roups   represent ing   tempera ture ,  d i s -  
placement,   and  stress  according as m < 1 or m > 1. For m < 1, m i s  included 
i n   t h e  denominators i n   o r d e r  that   the  dimensionless   quant i t ies  V, approach 
the proper   values  a t  m + 0, cor responding   to   the   cons tan t   f lux   case .   For  
m > 1, m i s  not  included  in  the  dimensionless  groups so tha t  the   p rope r   l imi t s  
r e s u l t  as m +. 00, corresponding   to   the   case  of  sudden  change  of  temperature a t  
p = po Thus, for example, 

f o r  m 2 1 

T h i s   a l s o   a p p l i e s   t o  I( p, p0;-r). 

The graphs of t h e   r a d i a l  teqerature  d i s t r i b u t i o n s  show c h a r a c t e r i s t i c  
behavior ;   the   temperature  a t  f i r s t  r ises qu ick ly   i n  a t h i n   l a y e r  of material a t  
the   i nne r   su r f ace ,  and the tempera ture   g rad ien t   across   th i s   l ayer   increases  
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Figure 5.- Transient  temperature and s t resses   for   the   in te rna l ly   hea ted  disk. Case B; zero   s t ress  a t  
p = po and p = 1. 

28 



I:i .6 

I 
m = 0 1  

u =  25 

p o =  15 a .8 

co 

-.OB- 

-.I 2 - 

-.16- 

-24 -  

-28-  

I .o 

8' 

- 2 -  

- 4 -  

- 6 -  

-8- 

-10- 

-I 2 -  

10 "46 

I 

4 .6 8 I a 

s 1.0 

Figure 6.- Transient  temperature  and  stresses for the   internal ly   heated disk. Case C (m = 0.1); 
zero stress a t  p = po and p = 1. 



.2 .4 P 

I 

J2 

m = 1.0 

v = .25 

po= 15 

8 

-08 

.2 

-2 

- 3  

zllkkii 4 p 6 ,0005 8 10 

.6 
.i .8 

Figure 7.- Transient  temperature  and  stresses for the   internal ly   heated  disk.  Case C (m = 1.0); 
zero stress a t  p = po and p = 1. 



\ 
\\ 

\ 

" 

\O 

. 
L 

P 
d 10 

1 
- 2  

-4 

-6 

-I - 8  oo 

12r 

10 - 

08 - 

1 ° C  
4 P  

I 

e 

F 
t -  

i 
10 

8 10 

Figure 8.- Transient  temperature  and  stresses fo r  the  internal ly   heated disk.  Case C (m = 10.0); 
zero stress a t  p = po and p = 1. 



Y =  25 

1 
.z .5,10,21 

4 

2 

Oe' 
0 

- 2  

-4  

-6 

- 8  

I l l  
4 p 6 

7 
I' 

,$ 
4' 

005" ~- 
I 

Figure 9.- Transient  temperature  and  stresses f o r  the  internal ly   heated d isk .  Case A; ze ro   s t ress  a t  
p = po and p = 1. 



w i t h  m. The curves of displacement show, f o r  a l l  values  of my a r a t h e r  we& 
maximum a t  a n   i n t e r i o r   p o i n t  which moves toward  the  outer  boundary as time 
increases .  The r a d i a l  stress, which i s  here  zero a t  both  boundaries  because 
po = 0, shows s imilar   behavior ,   a l though the extremum i s  much accentuated as 
7 increases .  It is ,  f o r  To > T,, compressive  throughout,  and i t s  p o s i t i o n  of 
numerical maximum moves from  the  inner  w a l l  f o r  T << 1 toward the value 
p = per p red ic t ed  i n  the   s ec t ion  on steady-state  behavior  (eq.  (15a)). 

In   t he   ca se  of the c i rcumferent ia l  stress, a f l a t  extremum occurs a t  f irst  
near  the  inner  boundary, moving t o  and past   the   outer   boundary as time 
increases .  The value a t  p = po i s  the  largest   compressive  s t ress ,and  the 
l a r g e s t   t e n s i l e  stress occurs   eventual ly  a t  p = 1. The maximum compressive 
stress i s  l a r g e r   i n  magni tude   than   the   l a rges t   t ens i le   s t ress ,  and a l s o   l a r g e r  
by a f a c t o r  of 3 t o  5 (depending  on m )  t han   t he  maximum radial  compressive 
s t r e s s .  The behavior of the c i rcumferent ia l  stress d i s t r i b u t i o n  i s  i n  some 
re spec t s  similar t o  that  of the   t empera ture   d i s t r ibu t ion   for  small values  of 
T. That i s ,  it i s  nonvanishing  only  in a th in   l aye r   nea r  the inner   surface,  
t h e  magnitude a t  the inner   surface and the   th ickness  of the l aye r   i nc reas ing  
w i t h  time. For t h e  more intense  heat ing (m > 1) the maximum compressive c i r -  
cumferent ia l  stress, a t  p = po, no longer   occurs   in  the steady state as it 
does f o r  the m _< 1 cases .  This behav io r   ca r r i e s   ove r   i n to   t he   s t r e s s   d i f f e r -  
ence (or* - ae*), and f i g u r e  10 shows t h i s  maximum value as a function  of time 

fo r   t he   va lues  m = 1, 10, 00. The 
curve  for  m = 1 i s  c h a r a c t e r i s t i c  of 

I ' H =  .7 .. rn=w - 10.0 ~ :; t he   s t r e s s   F ina l ly ,   d i f f e rence   i n   f i gu res  (or* 5 through - o *) 9, 

t hose   fo r  t he  smaller values of m 
a l s o .  

g ives  a measure  of t he  maximum shearing e 
f , , ,  I +  s t r e s s   t o   b e  found a t  any p o i n t .  A t  

I ~ I 1  I ' l l  I 2 

I the boundaries,  t h i s  quant i ty  i s  domi- 
na t ed   by   t he   c i r cumfe ren t i a l   s t r e s s ,  
and it f a l l s   t o   z e r o  and  changes  sign 
somewhat c loser   to   the   inner   boundary  
than  does oe*. 

Rig id ly   r e s t r a ined   ou te r  boundary.- 
I n   o r d e r   t o   g a i n  some notion  of the 

1.0 e f f e c t  of a r igid  outer   boundary,  a f e w  
,. curves w i l l  be g i v e n   i n  which the Figure 10.- Behavior of maximum sheaxi% 

s t r e s s  (or* - o~*)p=po for several values r e s u l t s   f o r  a free boundary  and a f i x e d  
of m(po = 0.15, v = 0.25). boundary are compared.  These a r e  drawn 

of which show the s tar t ing  behavior   and  s teady state as w e l l  as t h e   t r a n s i -  
t i o n a l   i n t e r v a l .  Also, only  the  displacement and s t r e s s   d i f f e r e n c e  are shown. 
Figure 11, where the   d i sp lacements   for   the  three values  of m are given, shows 
t h a t  i n i t i a l l y  ( T  = O*OO5), the differences  between the d isp lacements   in   the  
cases  of zero and  complete r e s t r a i n t  are rather small. However, as time goes 
on, the   d i f fe rences   increase   and ,  as expected, the f ree  displacements are u l t i -  
mately  considerably  greater  throughout  than  those  for a r i g i d   r e s t r a i n t .  These 

only   for  m = 0, 1, 00 and fo r   va lues  
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Figure 11.- Comparison  of  displacements  u* 
and u '  for f r e e  and  f ixed  outer  boundary, 
r e spec t ive ly  (po  = 0.15, v = 0.25). 
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f r e e  and fixed  outer  boundary,  respec- 
t i v e l y  ( p  = 0.15, v = 0.25) .  
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e f f e c t s   i n c r e a s e   i n  magnitude  with  the  intensity of heat ing,  as would a l so   be  
expected. 

Figure 12 i l lustrates the  differences  between  the  values  of (a,' - 08' ) 
and (ar* - ae*), corresponding t o   f i x e d  and free outer  boundaries,   respectively.  
The v a r i a t i o n  i s  seen t o  be  s imilar   over   the range po < p < 1, the f ixed  
boundary  giving  the  higher  magnitudes.  Again,  differences are heightened  by 
increas ing  T and  by  intensif icat ion  of   heat ing,  or i nc reas ing   t he   B io t  
number m. 

E f fec t  of Poisson 's   Rat io  v 

In   the  f ree-boundary  case,   only  the  displacement  u* i s  affected  by a 
change  of Po i s son ' s   r a t io .   F igu re  13 shows the magnitude  of t h e   e f f e c t   f o r  the 

Figure 13.- E f f e c t  of Poisson's ratio v on displacement u*(po = 0.15). 

extreme  cases m = 0, w. I n  a l l  cases,  the  magnitude of the  displacement 
increases   wi th  V .  I n   t h e  most severe  heat ing (m = a), t h e  change i n   d i s p l a c e -  
ment due t o  a change i n  v i s  s i zab le  a t  i t s  maximum, even f o r   t h e  smallest 
value of T ( T  = 0.005) considered. 

S i m i l a r   r e s u l t s  for the s t r e s s   d i f f e r e n c e  (a1^' - a ' )  i n  the f ixed  bound- 
a r y   s i t u a t i o n   a p p e a r   i n   f i g u r e  14. Here, f o r  T = 0.009 and m = a, the e f f e c t  
of a l t e r i n g  V does  not  appear t o  be  proport ionately as g r e a t  as it was f o r  
the   d i sp lacement   resu l t s  shown above. 

The Influence  of Wall Thickness 

The differences  between  the  solutions  under  various  heating  inputs  and 
r e s t r a i n t   c o n d i t i o n s   f o r   d i f f e r i n g   v a l u e s  of the  geometr ical   parameter  po are 
somewhat more d i f f i cu l t   t o   p red ic t   t han   t hose   found   i n   t he   pa rame te r   su rveys  
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Figure 14.- E f f e c t  of P o i s s o n ' s   r a t i o  v on maximum s h e a r i n g   s t r e s s  ( u r '  - o,')(po = 0.15). 
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Figure 15.- Variat ion  of  maximum shear  (ur* - u8*) i n   t h i n - w a l l e d   d i s k  (po = 0.90, v = 0.25) .  
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Figure 16.- Var i a t ion  of maximum shear  (or* - De*) i n   t h i ck -wa l l ed   d i sk  (po  = 0.03, v = 0.25) -  
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considered  above.   Firs t ,   f igures  15 and 16 show s t r e s s   d i f f e rences   fo r   w ide ly  
d i f f e r e n t  w a l l  th icknesses  (po = 0.05 and 0.90) f o r  a free  outer  boundary,  and 
f o r   t h e  extreme  heating  conditions m = 0, w. I n  the   case  of t h e   t h i n  w a l l  
( po = 0.90, f i g .  15) , the   s teady-s ta te   d i s t r ibu t ions   appear   near ly   l inear   for  
bo th   hea t ing   cond i t ions ,   wh i l e   t he   s t a r t i ng   d i s t r ibu t ions  ( T  = 0.0005) a r e  
somewhat s impler   than  those  given  previously  for  p0 = 0.15; that  i s ,  no t r a c e  
of  an i n t e r n a l  extremum in   s t ress   d i f fe rence   remains .  

I n   f i g u r e  16, t h e   r e s u l t s  for s t r e s s   d i f f e r e n c e   i n  a ve ry   t h i ck   r i ng   a r e  
given. Here t h e  stress gradien t   near   the   inner   sur face  i s  much g r e a t e r   t h a n   i n  
the   t h in - r ing   o f   f i gu re  15. A d e f i n i t e   i n t e r i o r  extremum e x i s t s   f o r  small T, 

and t h e r e  i s  a greater   concentrat ion of t he   s t r e s s   nea r   t he   i nne r   su r f ace  a t  
t h e   i n i t i a t i o n  of  heating. 

Figures 17 and 18 show the   quan t i t i e s   co r re spond ing   t o   t hose   i n   f i gu res  15 
and 16, on ly   fo r   t he   s t r e s s -boundary   cond i t ion   o f   r i g id   r e s t r a in t  a t  p = 1- 
The charac te r  of t h e s e   f i g u r e s  i s  analogous t o - t h a t  of the  corresponding  ones 
f o r  a free  outer  boundary, 
r i g i d  
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Figure  17.- Varia t ion  of maximum shear  (ur' - cr8') i n   t h i n - w a l l e d   d i s k  (p, = 0.90, V = 0.25).  
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Figure 18.- Var i a t ion  of maximum shear  (or1  - u ~ ' )  i n   t h i c k - w a l l e d   d i s k  (po = 0.05, v = 0.25). 

CONCLUDING REMARKS 

The present   calculat ions  should  be  useful   in   determining  heat ing  which 
will keep t h e   s t r e s s e s  below some allowable maximum, as i l l u s t r a t e d   f o r   o t h e r  
configurat ions  by  Heis ler   in   reference 1. 

The thermal   s t resses   can become considerable ,  as the  following example 
w i l l  show. For the   case  shown i n  f i g u r e  7 ,  t h e  maximum s t r e s s  i s  given  by  the 
value of a@* a t  the  inner  w a l l  i n   t h e   s t e a d y   s t a t e .  It i s  

For several   mater ia ls ,   such as aluminum or   s tee l ,   the   expans ion   coef f ic ien t  a 
has a value  roughly lX10-5/0K t o  2X10-5/0K. If the  temperature   difference i s  
To - T, = 200' K, t he  maximum s t r e s s  i s  i n   t h e   r a n g e   t o  2EX10'3. (If 
the  object   considered i s  a p ipe   ra ther   than  a d i s k ,   t h i s   s t r e s s  i s  divided  by 
1 - v. For  the  mater ia ls   ment ioned,   this  amounts t o  taking  about 4/3 the  
above r e s u l t s  0 )  



Now, as discussed  by N&la i  i n  reference 13 (ch. 13), t he   va r ious   f ac to r s  of 
dependence  of mater ia l   cons tan ts  upon temperature  and  the  onset of p l a s t i c   f l o w  
should  be  taken  into  account when thermal   s t resses  become severe.  If it i s  
d e s i r e d   t o  keep t h e   s t r e s s e s  below t h e   l e v e l  a t  which  these new e f f e c t s   e n t e r ,  
t he   ca l cu la t ions  above w i l l  s e rve   t o   de f ine  limits on the   hea t ing ,   o r  dimen- 
s ions ,  or other  parameters  which w i l l  so conf ine   these   thermal   s t resses .  

Ames Research  Center 
National  Aeronautics  and  Space  Administration 

Moffett   Field,  Calif., Sept. 17, 1965 
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APPENDIX 

SYMBOLS 

Jo, yo 

k 

m 

P 

Po,  Po x 

q 

r 

t 

T 

TO 

U 

outer  and  inner ra d i i  of   annular   disk or ho 8110w cy l inder  

Io(z)Ko(q) - Io(q)Ko(z) 

I l ( Z ) K 0 ( d  + I0(q)K1(z) 

(Po - 1) /Po  (eq.  (21)) 

Young ' s modulus 

su r face   hea t - t r ans fe r   coe f f i c i en t   ( eq .   (kc ) )  

i n t e g r a l   a r i s i n g   i n   s t r e s s   c a l c u l a t i o n   ( e q .  ( l o a ) )  

modified Bessel func t ions  of zero  order ,  of f i r s t  and  second 
k inds  

Besse l   func t ions  of zero  order  of f i r s t  and  second  kinds 

thermal   conduct ivi ty  

Biot  number, hb/k 

Laplace  transform  variable 

i n t e r n a l   p r e s s u r e  and  dimensionless  internal  pressure 

p l l 2  

r ad ia l   coo rd ina te  

time 

temperature 

boundary  conditions,   equations (4)  

temperature of medium i n  r < b 

i n i t i a l   t e m p e r a t u r e  of s o l i d  

d isp lacement   in   thermal ly   s t ra ined  body 

dimensionless  temperature  ratio,  (TA - Tl)/(To - T1) 
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VB 

VC 

Z 

a 

ax ia l   d i s t ance   a long  a cyl inder  

c o e f f i c i e n t  of thermal  expansion 

eigenvalue,   equation (7a) 

(3 + Po)/Po ( e s .  (22)) 

eigenvalue,   equation (8a) 

-(3 + p0 + 8m)(see  eq. (19)) 
8 P O  
thermal d i f f u s i v i t y  

1 

eigenvalue  (eq.  (6a ) )  

P o i s s o n ' s   r a t i o  

dimensionless   radial   coordinate;  r/a 

b/a  

radial  and   c i rcumferent ia l   s t resses  

a x i a l  stress 

dimensionless  t ime  variable;  Kt/a2 

s t r e s s   cond i t ion  of free outer  boundary 

stress condi t ion of r i g i d l y   r e s t r a i n e d   o u t e r  boundary 
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